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Characteristic polynomials of chemical graphs via
symmetric function theory
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The characteristic polynomial corresponding to the adjacency matrix of a
graph is constructed by using the traces of the powers of the adjacency matrix
to calculate the coefficients of the characteristic polynomial via Newton’s
identities connecting the power sum symmetric functions and the elementary
symmetric functions of the eigenvalues. It is shown that Frame’s method, very
recently employed by Balasubramanian, is nothing but symmetric functions
and Newton’s identities.
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1. Introduction

Many problems in graph theory that arise in organic chemistry eventually require
the construction of the characteristic polynomial corresponding to the vertex
adjacency matrix of the graph. The coeflicients of the characteristic polynomial
have an interpretation as sums of principal minors of the determinant of the
adjacency matrix [1], although direct evaluation via this approach is feasible
only for very small graphs. Collatz and Sinogowitz [2] were among the very first
to study the relationship between the coefficients of the characteristic polynomial
and the elements of the adjacency matrix by various techniques. Sachs [3], but
see also Spialter [4] and Mowshowitz [5], showed that the coefficients of the
characteristic polynomial are given by sums over various subgraphs. Trinajstic
[6] has made extensive use of Sachs theorem to evaluate the characteristic
polynomial of conjugated hydrocarbons. The monograph by Graovac, Gutman
and Trinajstic [7], is a valuable source of information on this problem.
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Since this manuscript was completed, two important papers have appeared:
Balasubramanian [8] and Randic [9]. Each contains extensive references to the
literature.

The purpose of this communication is to present a general procedure for construct-
ing the characteristic polynomial. This procedure rests upon known properties
of symmetric functions of the eigenvalues of the adjacency matrix, and employs
the traces of the powers of the adjacency matrix to calculate the coefficients of
the characteristic polynomial via Newton’s identities connecting the power sum
symmetric functions and the elementary symmetric functions.

2. The characteristic polynomial of the adjacency matrix

If G is an unoriented graph containing » vertices, then the adjacency matrix
A(G) is a matrix of 0’s and 1’s such that [1]

A= {1 if i and j are adjacent vertices
Y |0 ifiandj are non-adjacent vertices.
A is an N X N real, symmetric matrix and as such its eigenvalues are real. The

set of all eigenvalues: A, Ay, ..., Ay is termed the graph spectrum and satisfies
the characteristic polynomial

P(G; A)=det[A—~AI]

N
=L (DPAYT po=L 1)

The p, are either integer-valued or zero. For example, p, =0, when n is an odd
integer, for alternant hydrocarbons [6]. As the size of the graph increases, the p,
become very large and numerical computations are probably best done in integer
arithmetic (or in triple precision).

3. Construction of the characteristic polynomial
Central to our evaluation of the p, are the traces of the powers of A
o=trA, 1=1,2,...,N. (3.1)

Since A is symmetric, it can be diagonalized and the eigenvalues: A, A,, ..., An
form the principal diagonal. Obviously

o=Y AL (3.2)

Since the A, are real, so is 0. The oy are the power sum symmetric functions,
see Bdcher [10] or Weyl [11]. The o, are invariant under the group of all N!
possible permutations of the N arguments. These permutations are linear transfor-
mations of the N-dimensional vector A =(Ay, A,,..., Ay). The important point
to note is that oy is obtained directly from A itself by raising A to the /th power
and taking the trace, nowhere do we use the individual eigenvalues.
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The p, are the elementary symmetric functions formed from the eigenvalues. In
the usual notation for elementary symmetric functions, see Bocher [10] or Weyl

[11]:

=y A=trd
P2=2 A,
P3=2 A1AsAs (3.3)

Pn=AAs - - An =det A

The p, are also invariant under the group of all N! permutations of the N
arguments.

Our problem is to express the p’s in terms of the o’s. This is exactly the inverse
of the problem that arises in the theory of equations where the p’s are given and
the o’s are to be evaluated, see Burnside and Panton [12].

The power sum symmetric functions and the elementary symmetric functions are
related by Newton’s identities [12]

Opn—0p (P11t O spr—0,_3pst-- '+(_1)n_20'2Pn—2
+H(=1)""opy+(=1)"np, =0 (3.4)

where n = N. We observe the convention that p, = 0 if n is greater than the degree
of the characteristic polynomial. Note that p, is determined by o, ..., o,; thus
to evaluate ps (say) we require o, to o5 only. Obviously py requires a knowledge
of all ¢’s from o, to on.

Fortunately Newton’s relations simplify even further because o, =0 (i.e. tr A=0),
implying that p, =0. Consequently Eq. (3.4) reduces to

Opt Op_spr—Gn_sps+- - -+(—1)"np, =0. ‘ (3.5)
Thus given the o’s, we can generate the p’s by recursion.
Although the p’s are probably most easily obtained from the o’s by direct
numerical evaluation of the Newton identities via computer, we list the first ten

P» as obtained by sequential manipulations for those who may require the explicit
formulae:

2p, =0, (3.6)
3ps=20; (3.7)
Alp,=—60,+303 (3.8)
51ps=2405—200,0, (3.9)
6!ps=—12005+90040,+ 40051503 (3.10)
71p;=T7200,— 504050, — 4200,05+ 2100503 (3.11)

8!ps=—504005+ 336000, + 26880505+ 126002
—12600,0%—1120030,+ 10505 (3.12)
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91po =40 3200, — 25 92000, — 20 160005 — 18 144050, + 90720502
+15 12004050, + 224002 25200503 (3.13)
10!p10 = —362 88004+ 226 800040, + 172 8000, 0
+151 20000, — 75 6000503+ 72 576073
—120 96005030, — 56 700050, — 50 4000,03
+18 9000-,03 + 25 2000203 — 94503, (3.14)

It is not my intention to discuss detailed numerical computations, but an example
hopefully suffices to illustrate the method. Consider the graph [6] for 3,4-
dimethylenecyclobutene(I); its adjacency matrix is

0 1.0 0 0 O
1 0 1 0 1 0
0 1 0 1 0 O
A= 15
0 01 0 1 O (3.15)
0 1 0 1 0 1
0O 0 0 0 1 0
Upon calculating the traces of the powers of A, we have:
0-120, 0'3=0, 0'5=O
02=12, 0,=54, og=258. (3.16)
Newton’s identities then yield
=0, p:=0, ps=0
3.17
p2=-6, ps=5 ps=-1L (3.17)
Thus the characteristic polynomial is
P(G A)=A—6A%+51%—1. (3.18)

This expression is the same as that obtained by Trinajstic [6] using Sach’s theorem.

4. Comment

The technique employed by Balasubramanian [8] (and termed by him Frame’s
method) to construct the characteristic polynomial is nothing but symmetric
functions and Newton’s identities in disguise. In his method, the following
matrices are constructed:

B,=A-p,A
B,=AB,+p,A
B,=AB,—p;A (4.1)

B4 = AB3 +p4A




Characteristic polynomials of chemical graphs 39

It can be shown that the characteristic polynomial coefficients p, are given by
1
p= tr B,_,. (4.2)

The right-hand side can be expressed in terms of o and is simply Newton’s
identity. To see this consider, for example p;. Repeated substitution of B;, B,
and B; into B, yields (upon assuming that p, =0)

B,=A’+p,A’—p.A’+p,A. (4.3)
Upon taking the trace of both sides and using Eq. (4.2), we have

Ps=3(0s+ pa03—p30). (4.4)
However, this is Newton’s identity with n =35, see Eq. (3.5).
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