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The characteristic polynomial corresponding to the adjacency matrix of a 
graph is constructed by using the traces of the powers of the adjacency matrix 
to calculate the coefficients of the characteristic polynomial via Newton's 
identities connecting the power sum symmetric functions and the elementary 
symmetric functions of the eigenvalues. It is shown that Frame's method, very 
recently employed by Balasubramanian, is nothing but symmetric functions 
and Newton's identities. 
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1. Introduction 

Many problems in graph theory that arise in organic chemistry eventually require 
the construction of the characteristic polynomial corresponding to the vertex 
adjacency matrix of the graph. The coefficients of the characteristic polynomial 
have an interpretation as sums of principal minors of the determinant of the 
adjacency matrix [1], although direct evaluation via this approach is feasible 
only for very small graphs. Collatz and Sinogowitz [2] were among the very first 
to study the relationship between the coefficients of the characteristic polynomial 
and the elements of the adjacency matrix by various techniques. Sachs [3], but 
see also Spialter [4] and Mowshowitz [5], showed that the coefficients of the 
characteristic polynomial are given by sums over various subgraphs. Trinajstic 
[6] has made extensive use of Sachs theorem to evaluate the characteristic 
polynomial of conjugated hydrocarbons. The monograph by Graovac, Gutman 
and Trinajstic [7], is a valuable source of information on this problem. 
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Since this manuscript was completed, two important papers have appeared: 
Balasubramanian [8] and Randic [9]. Each contains extensive references to the 
literature. 

The purpose of  this communication is to present a general procedure for construct- 
ing the characteristic polynomial. This procedure rests upon known properties 
of symmetric functions of the eigenvalues of the adjacency matrix, and employs 
the traces of  the powers of the adjacency matrix to calculate the coefficients of 
the characteristic polynomial via Newton's identities connecting the power sum 
symmetric functions and the elementary symmetric functions. 

2. The characteristic polynomial of the adjacency matrix 

If  G is an unoriented graph containing n vertices, then the adjacency matrix 
A(G) is a matrix of O's and l 's such that [1] 

A/j = {10 if i and j are adjacent vertices 
if i a n d j  are non-adjacent vertices. 

A is an N x N real, symmetric matrix and as such its eigenvalues are real. The 
set of all eigenvalues: A1, A2, . . . ,  AN is termed the graph spectrum and satisfies 
the characteristic polynomial 

P(G; A) = det [A - AI] 

N 

= ~ (-1)"P,A N-n, P0--- 1. (2.1) 
n ~ 0  

The p, are either integer-valued or zero. For example, p, ---- 0, when n is an odd 
integer, for alternant hydrocarbons [6]. As the size of the graph increases, the p, 
become very large and numerical computations are probably best done in integer 
arithmetic (or in triple precision). 

3. Construction of the characteristic polynomial 

Central to our evaluation of  the Pn are the traces of the powers of A 

trl---trA l, I = 1 , 2  . . . .  ,N.  (3.1) 

Since A is symmetric, it can be diagonalized and the eigenvalues: A1, A2 . . . . .  AN 
form the principal diagonal. Obviously 

crt = Y, A ~. (3.2) 
tl 

Since the An are real, so is try. The o-~ are the power sum symmetric functions, 
see B6cher [10] or Weyl [11]. The tr I are invariant under the group of  all N[  
possible permutations of the N arguments. These permutations are linear transfor- 
mations of  the N-dimensional vector it = (A1, A2, �9 �9 �9 AN). The important point 
to note is that o-t is obtained directly from A itself by raising A to the lth power 
and taking the trace, nowhere do we use the individual eigenvalues. 
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The p ,  are the e lementa ry  symmetr ic  funct ions  fo rmed  f rom the eigenvalues.  In 
the usual no ta t ion  for  e lementary  symmetr ic  funct ions,  see B6cher  [10] or Weyl 
[~1]: 

Pl = ~  hi  = t r  A 

p 2 = ~  /~- lh  2 

P3 = ~ Al)t2/~3 (3.3) 

PN =AIA2 " " " AN = d e t  A. 

The p ,  are also invar iant  under  the g roup  of  all N !  permuta t ions  of  the N 
arguments .  

Our  p r o b l e m  is to express  the p ' s  in terms of  the 0"'s. This is exact ly the inverse 
of  the p r o b l e m  that  arises in the theory of  equat ions  where  the p ' s  are given and 
the 0"'s are to be evaluated,  see Burnside and Pan ton  [12]. 

The power  sum symmet r ic  funct ions and the e lementary  symmetr ic  funct ions are 
related by  Newton ' s  identities [12] 

00n --  0- .  l p 1 +  0", ,-  2 p 2  - -  0", ,-  3 p 3  4- " " "+(--1)"-2002p,_2 

+ (-- 1)~-1o'1p,_1 + (--1)~np, = 0 (3.4) 

where  n ~ N. We observe  the convent ion  that  p ,  = 0 if n is greater  than  the degree 
of  the character is t ic  po lynomia l .  Note  that  p ,  is de te rmined  by  001, - �9 �9 00,; thus 
to evaluate  Ps (say) we require  0"1 to ors only. Obvious ly  PN requires a knowledge  
of  all o-'s f rom 001 to 0".. 

For tunate ly  Newton ' s  relat ions s implify even fur ther  because  0"1 = 0 (i.e. tr A -= 0), 
implying tha t  pl = 0. Consequen t ly  Eq. (3.4) reduces  to 

0", + 0 0 , -  2P2 - 00n-3P3 4- " " " 4 -  (--1)"np,  = 0. (3.5) 

Thus  given the 00's, we can generate  the p ' s  by recursion.  

Al though the p ' s  are p robab ly  most  easily ob ta ined  f rom the 00's by  direct 
numer ica l  eva lua t ion  of  the Newton  identities via computer ,  we list the first ten 
p ,  as ob ta ined  by sequent ia l  manipu la t ions  for  those who may  require the explicit  
formulae:  

2!p2 = 0-2 (3.6) 

3 !P3 = 20"3 (3.7) 

4 !P4 = - - 6 0 " 4  q- 3 0"2 (3.8) 

5 !Ps = 240"5 - 200~ (3.9) 

6 !P6 = - -  1200"6 + 9 0 o ' 4 0 " 2  4- 400" 2 -- 15 003 (3.10) 

7 !P7 = 7200"7 -- 5040"5002 -- 4200040"3 + 210o'3o-2 (3.11) 

8 !P8 = --5040008 + 33600060-2 + 26880-50-3 + 126000 2 

2 2 4 -12600040"2 - 11200"3o'2+ 1050"2 (3.12) 
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9 !P9 : 40 3200"9 - 25 920o-70"2 - 20 1600"60"3 - 18 1440"5o"4 q- 90720"so'~ 

+ 15 1200"40"30"2+22400" ~ - 2 5 2 0 0 . 3 0 -  3 (3.13) 

10!Pl0 = -362  8800-10+226 8000"80-2+ 172 8000"70"3 

+ 151 2000"60"4-75 600o-60"22+ 72 5760" 2 

- 120 9600"50"30-2 - 56 7000-20-2 - 50 4000"40" 2 

h- 18 9000"40" 3 -k- 25 200o-320-22 - 945 0"25. (3.14) 

It is not my intention to discuss detailed numerical computations,  but an example 
hopefully suffices to illustrate the method. Consider the graph [6] for 3,4- 
dimethylenecyclobutene(I);  its adjacency matrix is 

A =  

0 1 0 0 0 0 

1 0 1 0 1 0 

0 1 0 1 0 0 

0 0 1 0 1 0 

0 1 0 1 0 1 

0 0 0 0 1 0 

(3.15) 

Upon  calculating the traces of  the powers of  A, we have: 

0.1 ~--" 0,  0" 3 : 0,  0" 5 : 0 

0"2 = 12, 0"4 = 54, 0"6 = 258. (3.16) 

Newton's  identities then yield 

Pl = 0, P3 = 0, P5 = 0 
P2 = - 6 ,  P4 = 5, P6 = --1. (3.17) 

ThUS the characteristic polynomial  is 

P(G, A) = A6-6A4-+- 5A 2 -  1. (3.18) 

This expression is the same as that obtained by Trinajstic [6] using Sach's theorem. 

4. Comment  

The technique employed by Balasubramanian [8] (and termed by him Frame's  
method) to construct the characteristic po lynomia l  is nothing but symmetric 
functions and Newton 's  identities in disguise. In his method, the following 
matrices are constructed: 

B1 -- A 2 - p l A  

B2 = AB1 + p2A 

B 3 =- A B  2 - p 3  A (4.1) 

B4 : A B 3  q- p4A 
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It can be shown that the characteristic polynomial coefficients Pn are given by 

1 
p. = - tr B,_I. (4.2) 

n 

The right-hand side can be expressed in terms of o-~ and is simply Newton's 
identity. To see this consider, for example Ps- Repeated substitution of BI, B2 
and B 3 into B4 yields (upon assuming that pl = 0) 

B 4 = A s + p2A 3 - p3 A2 + p4 A.  (4.3) 

Upon taking the trace of both sides and using Eq. (4.2), we have 

Ps = ~(~s + p2~r3 - p3o'2). (4.4) 

However, this is Newton's identity with n = 5, see Eq. (3.5). 

References 

1. Biggs, N.: Algebraic graph theory. Cambridge: Cambridge University Press 1974 
2. Collatz, L., Sinogowitz, U.: Abh. Math. Sere. Univ. Hamburg, 21, 63 (1957) 
3. Sachs, H.: Publ. Math. Debrecen, 11, 119 (1964) 
4. Spialter, L.: J. Chem. Doc., 4, 269 (1964) 
5. Mowshowitz, A.: J. Comb. Theory, 12, 177 (1972) 
6. Trinajstic, N.: Croat. Chem. Acta, 49, 593 (t977) 
7. Graovac, A., Gutman, I., Trinajstic, N.: Topological approach to the chemistry of conjugated 

molecules. Berlin Heidelberg New York: Springer 1977 
8. Balasubramanian, K.: Theor. Chim. Acta 65, 49 (1984) 
9. Randic, M.: Siam J. Alg. Disc. Meth., 6, 145 (1985) 

10. Bocher, M.: Introduction to higher algebra. New York: Macmillan 1907 
11. Weyl, H.: The classical groups, their invariants and representations. Princeton: Princeton Univer- 

sity Press, 1946 
12. Burnside, W., Panton, A.: Theory of equations, vol. 1. New York: Dover 1956 


